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Abstract. We investigate the spontaneous radiation from a ladder three-level atom embedded in a three-
dimensional anisotropic photonic crystal with an external driving field. The properties of the spontaneous
emission are dependent strongly on the relative position of the middle level from the band edge. Due to
the Autler-Townes splitting by the action of the driving field, the external driving field can also affect
the properties of the spontaneous emission. The population exchanged between the upper and the middle
levels decreases as the detuning of the external driving field frequency from the corresponding transition
frequency increases. The properties of the emission field can be changed or so much as controlled by
choosing suitable intensity of the external driving field. The emission spectrum is more complex, and
dependent on the location of the observer in this case.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements – 32.80.Bx Level crossing and optical pumping

QICS. 15.10.Ph Photons

1 Introduction

Since the initial prediction of photonic crystal by
Yablonovitch and John [1], photonic crystals have at-
tracted much attention and become an intensive research
area. Photonic crystals are periodically modulated dielec-
tric structures with the existence of one or several com-
plete photonic band gaps (PBG). A photonic band gap is
a frequency interval within which no propagating electro-
magnetic (EM) modes are allowed and the propagation of
electromagnetic (EM) waves is forbidden in all directions.
The dispersion characteristics of radiation waves traveling
in a photonic crystal are changed, and the mode density of
the electromagnetic field is strongly different from that of
the free space vacuum field. Consequently, photonic crys-
tals lead to a new frontier in quantum optics and offer
many new technological applications.

Spontaneous emission is a fundamental concept in
atomic physics. It is well-known that spontaneous emis-
sion is the result from the coupling of the atoms or
molecules to the vacuum modes of the electromagnetic
field, and depends not only on the properties of the ex-
cited atomic system but also on the nature of the sur-
rounding environment, specifically on the density of elec-
tromagnetic vacuum modes [2]. Furthermore, to control
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spontaneous emission well is important for the control of
an atom in terms of its stability. If the excited atoms are
embedded in photonic crystals, the relation between the
atomic dynamic properties and the time decay of the ra-
diation may be changed due to the influence of the special
surrounding environment. So the change of mode density
and the inhibition of electromagnetic wave propagation
in photonic crystals provide a way to control the sponta-
neous emission, which would promote the development of
optics and optoelectronics, and has many important ap-
plications [3]. During recent years, considerable attention
has been paid to the properties of spontaneous emission
from an initially excited atom embedded in photonic crys-
tals [4–21]. The previous studies show that the gap edge
has great influence on the optical behavior of an atom in
a photonic crystal, and many interesting effects have been
discovered when the atomic resonant transition frequen-
cies are near the photonic band edge, such as localization
of light [1,4], non-exponential spontaneous decay [5], spec-
tral splitting [5,7], the formation of photon-atom bound
states [5–10], suppression and even complete cancellation
of spontaneous emission [8,9], periodic and quasiperiodic
oscillations, the enhancement of spontaneous emission
interference [7,10], coherent control of spontaneous emis-
sion [11], the occurrence of dark lines in spontaneous
emission [12], accelerated and decelerated decays of the
radiation from an atom [13], the quantum Zeno effect
and the quantum anti-Zeno effect [14], the creation of
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entanglement [15], giant Lamb shift in photonic crys-
tals [16], the quantum features of one-atom laser emission
in photonic crystals [17], the optical switching effect and
the mechanism of controlling light with light [18], discus-
sion about the low frequency field influence on sponta-
neous emission [19], the experimental observation of di-
rectional spontaneous emission spectra [20], the control of
spontaneous emission rate of single quantum dots [21], etc.

On the other hand, coherent interaction of atom with
external driving field can have a profound effect on ra-
diative dynamic of the atom, which is one of the ba-
sic research field in quantum optics. With the exter-
nal driving field, the atomic system can lead to many
interesting quantum phenomena: electromagnetically in-
duced transparency (EIT) [22], the collapse and revival of
the atomic population [23], population inversion without
emission [24], lasing without population inversion [25], a
dark line in the spontaneous emission spectrum [26], etc.
The emission spectrum for a ladder three-level atomic sys-
tem with external driving field was studied by Zhu in ref-
erence [26], and the dark line, non-Lorentzian shape are
found in the emission spectrum due to quantum inter-
ference. The emission spectrum for a ladder three-level
atomic system without external driving field in a pho-
tonic crystal was studied by Bay and Lambropoulos in
reference [6]. The coherent control of spontaneous emis-
sion from a Λ or V three-level system was discussed in
reference [11], which is based on the isotropic photonic
crystal. However, in these studies, an isotropic photonic
dispersion relation was used in order to simplify the cal-
culation, which results in a singularity for the density of
states at the band edge. If the vector nature of electro-
magnetic waves can be neglected or the mode structures
of the photonic crystal are same in all spatial directions,
the isotropic model is a good approximation and leads
to qualitatively correct physics and exhibits many of the
observed and computed features of 3D PBG structures.
If the mode structures of the photonic crystals are dif-
ferent in different spatial directions, a three-dimensional
anisotropic photonic dispersion relation should be adopted
to model the band edge of photonic crystals, where the sin-
gularity of the density of states is removed. From our ear-
lier studies, it is found that the anisotropic model indeed
leads to rather unusual phenomena as comparing with the
isotropic case. For example: the disappearance of localized
field, no quasi-oscillation for the population evolution, no
coexistence of the localized field and the propagating field,
the enhancement of the diffusion field [10,27,28], etc. Not
only the external driving field, but also the special envi-
ronment anisotropic photonic crystal can play important
roles in the interaction between light and materials and
can affect the properties of the spontaneous emission from
an excited atom.

In the present paper, we investigate the spontaneous
radiation from a ladder three-level atom embedded in a
three-dimensional anisotropic photonic crystal with an ex-
ternal driving field. The properties of the spontaneous
emission are dependent strongly on the relative posi-
tion of the middle level from the band edge. Due to the

Fig. 1. The scheme of the
ladder three-level atom in
this system.

Autler-Townes splitting by the action of the driving field,
the external driving field can also affect the properties of
the spontaneous emission. The population exchanged be-
tween the upper and the middle levels decreases as the
detuning of the external driving field frequency from the
corresponding transition frequency increases. The prop-
erties of the emission field can be changed or so much
as controlled by choosing suitable intensity of the exter-
nal driving field. The emission spectrum is more complex,
and dependent on the location of the observer in this case.

This paper is organized as follows. In Section 2, the
model and the basic theory to study the spontaneous emis-
sion are given. The properties of the time evolution of the
population trapped in the excited state are discussed in
Section 3. In Section 4, we investigate the properties of
the emitted field in detail. In Section 5, we pay attention
to the spontaneous emission spectra of the system.

2 Basic theory

We consider a three-level atom in a cascade configura-
tion, with atomic levels |1〉, |2〉, |3〉 and eigenenergies
�ω1, �ω2, 0 respectively, where ω1 > ω2 (as shown in
Fig. 1) embedded in a three-dimensional anisotropic pho-
tonic crystal. The upper level |1〉 is coupled by an external
driving field to the middle level |2〉, which is coupled by
vacuum modes to the lower level |3〉. The resonant fre-
quency between levels |2〉 and |3〉 is ω2, which is assumed
to be near the edge of a photonic band gap. Performing the
rotating wave approximation (RWA) for the interaction,
the Hamiltonian of this system takes the form

H = �ω1 |1〉 〈1| + �ω2 |2〉 〈2| +
∑

k

�ωkb
†
kbk

+ i�
∑

k

gk(b†k|3〉〈2| − bk|2〉〈3|)

+ i�Ω(eiωLt |2〉 〈1| − e−iωLt |1〉 〈2|), (1)

where bk (b†k) is the annihilation (creation) operator for
the kth reservoir mode with frequency ωk. gk is the cou-
pling constant between the atomic transition |2〉 −→ |3〉
and the kth electromagnetic mode. It is well-known that
the mode functions in a whole photonic crystal are Bloch
functions. Since we are concerned here with a model very
close to the edge of the band gap, we use the free-space
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mode functions instead of the Bloch functions in the fol-
lowing discussions. It is expected to be a good approxima-
tion for large gaps, and for atomic transition frequencies
close to the edge of the band gap. For the model near the
band edge, the coupling constant gk can be approximated
by gk = ω2d2/�

√
�/(2ε0ωkV0)ek · ud. k represents both

the momentum and polarization of the modes. d2 and ud

are the magnitude and unit vector of the atomic dipole
moment of the transition, V0 is the quantization volume,
ek are the transverse unit vectors for the reservoir modes,
and ε0 is the Coulomb constant. Ω and ωL represent the
intensity and frequency of the external driving field. If a
three-dimensional anisotropic photonic crystal has an al-
lowed point-group symmetry, the dispersion relation near
the band edge could be expressed approximately by

ωk = ωc +A|k − kj
0|2, (ωk > ωc), (2)

where ωc is the cut-off frequency of the band edge. kj
0 are

the finite collections of symmetry related points, which are
associated with the band edge. A is the model-dependent
constant.

We assume the atom initially in the middle level |2〉,
and the radiation field is in the vacuum state. The wave
function of the system at arbitrary time t may be writ-
ten as

|ψ(t)〉 = A1(t)e−iω1t |1, {0}〉+A2(t)e−iω2t |2, {0}〉

+
∑

k

Bk(t)e−iωkt |3, {1k}〉 (3)

with A1(0) = Bk(0) = 0, A2(0) = 1. The state vector
|1, {0}〉 (|2, {0}〉) describes the atom in its excited state |1〉
(|2〉) with no photons in all reservoir modes, and the state
vector |3, {1k}〉 represents the atom in its ground state
|3〉 and a single photon in kth mode with frequency ωk.
From the Schrödinger equation i� ∂

∂t |ψ(t)〉 = H |ψ(t)〉, we
can obtain the following first-order differential equations
for the amplitudes A1(t), A2(t) and Bk(t),

∂

∂t
A1(t) = −ΩA2(t)e−iωL12t, (4a)

∂

∂t
A2(t) = ΩA1(t)eiωL12t −

∑

k

gkBk(t)e−iωk2t, (4b)

∂

∂t
Bk(t) = gkA2(t)eiωk2t (4c)

where we assume: ωL12 = ωL − ω1 + ω2, ωk2 = ωk − ω2.
Formally integrating the equation (4c), and then sub-

stituting into equation (4b), we have

∂

∂t
A2(t) = −

∑

k

g2
k

∫ t

0

A2(t′)e−iωk2(t−t′)dt′

+ΩA1(t)eiωL12t. (5)

With the help of the Laplace transform, we can solve the
above equations. The Laplace transform A1(s) and A2(s)

for the amplitudes A1(t) and A2(t) are found as

A1(s− iωL12) =
A1(0)[s+ Γ (s)] −ΩA2(0)
[s+ Γ (s)](s− iωL12) +Ω2

, (6a)

A2(s) =
A2(0)(s− iωL12) +ΩA1(0)
[s+ Γ (s)](s− iωL12) +Ω2

. (6b)

Where

Γ (s) =
∑

k

g2
k/[s+ i(ωk − ω2)]

= −iβ3/2/[
√
ωc +

√
−is− (ω2 − ωc)],

with β3/2 = (ω2d2)2
∑

j sin2 θj/(8πε0�A3/2) (see Ap-
pendix A) and ω2c = ω2 − ωc. Here θj is the angle be-
tween the dipole vector of the atom and the jth kj

0.
The phase angle of s is defined by −π < arg(s) < π,
and the phase angle of

√−is− (ω2 − ωc) is defined by
−π

2 < arg(
√−is− (ω2 − ωc)) < π

2 .
The amplitudes A1(t) and A2(t) can then be obtained

by means of the inverse Laplace transform

A1(t) =
1

2πi

∫ σ+i∞

σ−i∞
A1(s)estds, (7a)

A2(t) =
1

2πi

∫ σ+i∞

σ−i∞
A2(s)estds, (7b)

where the real number σ is chosen so that s = σ lies to
the right of all the singularities (poles and branch points)
of the functions A1(s) and A2(s). With the help of com-
plex function integration and the residue theorem, we can
obtain the expression of the amplitudes (see Appendix B):

A1(t) = e−iωL12t

[
∑

j

f2(x
(1)
j )

G′(x(1)
j )

ex
(1)
j βt

+
∑

j

f3(x
(2)
j )

H ′(x(2)
j )

ex
(2)
j βt+

eiω2ct

π

∫ ∞

0

f6(x)
f4(x)

e−xβtdx

]
,

(8a)

A2(t) =
∑

j

f1(x
(1)
j )

G′(x(1)
j )

ex
(1)
j βt +

∑

j

f1(x
(2)
j )

H ′(x(2)
j )

ex
(2)
j βt

+
eiω2ct

π

∫ ∞

0

f5(x)
f4(x)

e−xβtdx. (8b)

where these functions f1(x), f2(x), f3(x), f4(x), f5(x),
f6(x), G(x), and H(x) are defined in Appendix B. x(1)

j are
the roots of the equation G(x) = 0 in region [Re(x) > 0]
or [Im(x) > ω2c], and x

(2)
j are the roots of the equation

H(x) = 0 in region [Re(x) < 0 and Im(x) < ω2c]. G′(x)
and H ′(x) are the derivatives of those functions G(x) and
H(x), respectively. With the help of numerical calcula-
tion, we found that there are at least one root and at
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Fig. 2. Five-region distribution for roots with ωc = 100β and
ωL12 = 0.

most two roots. We can classify these roots into two types:
(i) pure imaginary root x(1)

j with its imaginary part larger

than ω2c; (ii) complex root x(2)
j with a negative real part

and an imaginary part smaller than ω2c. The number and
characteristics of these roots are dependent on the driv-
ing field and the relative position of the middle level |2〉 of
the atom from the band edge. For example, we have five
regions in the space of (ω2c,Ω) with ωc = 100β, ωL12 = 0
(as shown in Fig. 2) according to the number and the val-
ues of the roots. There are two pure imaginary roots in
region I, only one pure imaginary root in region II, one
complex root and one pure imaginary root in region III,
only one complex root in region IV, two complex roots in
region V. The last term in the right of equations (8a, 8b)
comes from the single-valued branch point contribution.
From the expressions of the amplitudes A1(t) and A2(t),
we can see that these roots are important in study of the
dynamical properties of the excited atom.

The amplitude of the radiation field at a particular
space point r can be calculated from Bk(t) via A2(t) in
the standard way (see Appendix C) [29]:

E(r, t) =
∑

k

√
�ωk

2ε0V0
e−i(ωt−k·r)Bk(t)ek. (9)

The emission spectrum S(r,ω) can be obtained by us-
ing the Fourier transform of the radiation field (see Ap-
pendix D),

S(r,ω) = |F(r,ω)|2 (10)
with F(r,ω) = (1/2π)

∫∞
0

E(r, t)eiωtdt.

3 Spontaneous emission

The influence of the external driving field on the spon-
taneous decay from the excited atom can be investigated
by examining the time evolution of the population in the
upper level |1〉 and the middle level |2〉, which can be ob-
tained from equations (8a, 8b):

P1(t) = |A1(t)|2, (11a)

P2(t) = |A2(t)|2 (11b)

and the total population is

P (t) = |A1(t)|2 + |A2(t)|2. (12)

The first term in the right of equations (8a, 8b) comes from
the pure imaginary roots x(1)

j = ib
(1)
j /β with ω2 − b

(1)
j <

ωc corresponding to photon-atom bound dressed states
caused by the interaction between the atom and its own
radiation occur at frequencies ω2 − b

(1)
j , which are within

the band gap and without decay. The dressed states with-
out decay lead to a fractionalized steady-state popula-
tion trapped in the upper level. While the second term in
the right of equations (8a, 8b) comes from complex roots
x

(2)
j = (a(2)

j +ib(2)j )/β with ω2−b(2)j > ωc and a(2)
j < 0 cor-

responding to photon-atom bound dressed states occur at
frequencies ω2 − b

(2)
j , which are within the traveling band

and the excited states population decay. The last term
in the right of equations (8a, 8b) yields a quasidressed
state at the band-edge frequency ωc. The quasidressed
state displays behavior of power-law decay, and a frac-
tionalized population in the excited states decays to the
ground state |3〉. It is easy to see that these dressed states
and quasidressed states are the combined results of the
effect of the band edge and the Autler-Townes splitting
by the external field.

The properties of the excited atomic population decay
are dependent on the relative position of the middle level
|2〉 from the band edge. When the middle level |2〉 is in
region I, we have two pure imaginary roots. The first and
last terms in the right of equations (8a) and (8b) exist,
and other terms are replaced by zero. Due to the Rabi
oscillation the populations in the levels |1〉 and |2〉 display
oscillatory periodic behavior for large time t (see Fig. 3a),
which represents the transfer of population between lev-
els |1〉 and |2〉 always exists. As the middle level |2〉 is in
region I (III, V) the amplitude of the quasidressed state
is negligibly small compared to the atomic dressed state.
When the middle level |2〉 is in region II, we have only
one pure imaginary root. The first and last terms in the
right of equations (8a) and (8b) exist, and the second term
is replaced by zero. In this region, the decay correspond-
ing to the quasidressed state is too strong to be ignored.
The Rabi oscillation leads to quasi-oscillatory behavior of
the population and the existence of the quasidressed state
leads to only a fractionally fractionalized population in
the excited states decays to the ground state |3〉 for large
time t (see Fig. 3b). When the middle level |2〉 is in re-
gion III, we have one pure imaginary root and one complex
root. All terms in the right of equations (8a) and (8b) ex-
ist. As a result of the Rabi oscillation, the population dis-
plays the quasi-oscillatory behavior. The decaying dressed
state leads to a fractionalized population in the excited
states decay to the ground state |3〉 for large time t (see
Fig. 3c). Comparing Figure 3b with Figure 3c, we found
that the decay of the population in Figure 3b is slower
than that in Figure 3c. The reason is that the quasidressed
state decays in the manner of a power-law decay, while the
dressed state corresponding complex root displays behav-
ior of exponential decay. When the middle level |2〉 is in
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Fig. 3. The excited state population P (t) (solid curve), P1(t)
(dotted curve), P2(t) (dashed curve) as a function of the scaled
time βt for ωc = 100β, ωL12 = 0, ω2c = −0.5β, and different
Rabi frequency of the external driving field. (a) Ω = 0.4β
(region I); (b) Ω = 0.547725β (region II); (c) Ω = 1.1β (re-
gion III).

region IV, we have only one complex root. The second and
last terms in the right of equations (8a) and (8b) remain,
and the first term is replaced by zero. Similarity to re-
gion II, the decay corresponding to the quasidressed state
is too strong to be ignored in this region. The population
displays the quasi-oscillatory behavior because of the Rabi
oscillation and the population in the excited states can de-
cay to zero as time goes to infinity (see Fig. 4b) because
of the disappearance of the non-decaying dressed sate. As
the middle level |2〉 is in region V, we have two complex
roots. The second and last terms in the right of equa-
tions (8a) and (8b) remain. The Rabi oscillation leads to
quasi-oscillatory behavior of the population and the pop-
ulation in the excited states can decay to zero faster than
that in region IV (see Fig. 4a).

The properties of the excited atomic population decay
also depend on the driving field. If the intensity of the driv-
ing field Ω is zero, the problem is reduced to a two-level
atom problem already treated in reference [28]. In this
case, we know that the spontaneous emission field dresses
the atom to form a dressed state, and the properties of the
dressed state are dependent on the nature of the emission
field. The excited state population can display non-decay
(an exponentially decay, a power law decay) corresponding
to the emission field is localized field (propagating field,
diffusion field). The emission field is essentially composed
of only one field at one time. Therefore, the excited state
population will have no quasi-oscillation because of the
lack of Rabi oscillation. From the above discussion, we
can see clearly that the population of the middle level
|2〉 can display non-decaying oscillatory periodic behavior

Fig. 4. The excited state population P (t) (solid curve), P1(t)
(dotted curve), P2(t) (dashed curve) as a function of the scaled
time βt for ωc = 100β, ωL12 = 0, ω2c = 0.5β, and different Rabi
frequency of the external driving field. (a) Ω = 0.4β (region V);
(b) Ω = 0.447205β (region IV); (c) Ω = 1.1β (region III).

or quasi-oscillatory decay with the driving field between
the levels |1〉 and |2〉. The excited state corresponding
to the middle level |2〉 is split into Autler-Townes dou-
blets by the action of the driving field. Further more, the
Autler-Townes doublets can form dressed states (due to
the strong interaction between the atom and its own ra-
diation field) in a combinating fashion due to the interfer-
ence between the two transitions from the Autler-Townes
doublets to the lower level. Therefore, the dressed states
are the combined results under the action of the driv-
ing field and the photonic crystal. In Figures 3 and 4 we
plot the time evolution of the excited states population
with ωc = 100β, and ωL12 = 0 for fixed relative posi-
tions of the middle level |2〉 but different Ω: ω2 = 99.5β,
Ω = 0.4β (region I), Ω = 0.547725β (region II), Ω = 1.1
(region III) for Figure 3 and ω2 = 100.5β, Ω = 0.4 (re-
gion V), Ω = 0.447205β (region IV), Ω = 1.1β (region III)
for Figure 4. From Figure 3, it is found that if the middle
level |2〉 is within the band gap initially, the two dressed
states are still within the band gap for weak driving field,
while one dressed state goes into deep band gap and the
other dressed state can move into the traveling band with
a stronger driving field. On the contrary, if the middle
level |2〉 is within the traveling band initially, the two
dressed states are still within the traveling band for weak
driving field, while one dressed state goes deeply into the
traveling band and the other dressed state can move into
the band gap with a stronger driving field as shown in
Figure 4. These phenomena can also be rationalized in
a somewhat different language more familiar in quantum
optics. Due to the strong external driving field, one of the
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Fig. 5. The excited state population P (t) (solid curve), P1(t)
(dotted curve), P2(t) (dashed curve) as a function of the scaled
time βt for ωc = 100β, Ω = 0.1β, ω2c = −0.5β, and differ-
ent detuning from the transition frequency ω12: (a) ωL12 = 0;
(b) ωL12 = 0.005β; (c) ωL12 = 0.5β.

two components created by the Autler-Townes splitting is
pushed into the band gap, where it is protected against
decay, while the other is pushed into the traveling band
where it can decay.

On the other hand, the detuning of the external driv-
ing field frequency from the transition frequency ω12 can
also affect the time evolution of the populations in the
levels |1〉 and |2〉. In Figure 5 we plot the time evolution
of the populations in the excited states with ωc = 100β,
Ω = 0.1β, ω2c = −0.5β, but for different detuning ωL12.
Here we just focus on the case corresponding to the middle
level |2〉 in region I in Figure 2. When the middle level |2〉
is in region I, there are two dressed states without de-
cay. The oscillatory periodic behavior of the populations
in the levels |1〉 and |2〉 indicates that the population is
exchanged between levels |1〉 and |2〉 with the help of the
external driving field. Moreover, almost no population de-
cays to the lower level |3〉 due to the middle level |2〉 in
region I and the transition from level |2〉 to lower level
|3〉 is forbidden. From Figure 5, we can see that the de-
tuning ωL12 determines what fraction of the population is
exchanged between levels |1〉 and |2〉. When the external
driving field is resonant with or detuned near the transi-
tion |1〉 ↔ |2〉, it is easy for the population to exchange
and the amplitude of the exchanging population is large.
On the contrary, when the driving field is detuned away
from the transition frequency ω12, the amplitude becomes
small because the exchange of the population is difficult in
this case. Moreover, the frequency of the oscillatory peri-
odic behavior of the population increases as the detuning
increases.

4 The emitted field

From equations (8b) and (9) we can calculate the emission
field under the approximation k · r � 1 [29]. Correspond-
ing to three terms of equation (8b) the radiated field can
be written as the sum of three parts,

E(r, t) = E(1)(r, t) + E(2)(r, t) + E(3)(r, t). (13)

E(1)(r, t) comes from the pure imaginary root x(1), and
E(2)(r, t) stems from the complex root x(2). E(3)(r, t)
comes from the last term (the power-law-decay term) in
equation (8b).

When the middle level |2〉 is within region I, we have
two pure imaginary roots x(1)

1 = ib
(1)
1 /β, x(1)

2 = ib
(1)
2 /β

and E(r, t) = E(1)(r, t) + E(3)(r, t). From equations (C.7)
and (C.9) we can rewrite the emission field E(r, t) as fol-
lows,

E(r, t) = E(1)
l1 (r, t)+E(1)

l2 (r, t)+Ed1(r, t)+E(1)
d2 (r, t) (14)

with

E(1)
lj (r, t) = E0(r)

f1(x
(1)
j )

G′(x(1)
j )

π

A
e−i(ω2−b

(1)
j )t−r/ljΘ

(
t− r

v
(1)
fj

)
,

Ed1(r, t) = E(3)(r, t),

E(1)
d2 (r, t) = E0(r)eφ

[
f1(x

(1)
1 )

G′(x(1)
1 )

J(r, t, x(1)
1 )

+
f1(x

(1)
2 )

G′(x(1)
2 )

J(r, t, x(1)
2 )

]
,

E0(r) =
ω2d2

8π2ε0ri

∑

j

eikj
0·r
[
ud − kj

0(k
j
0 · ud)

(kj
0)2

]
,

J(r, t, x) =
∫ ∞

−∞

(ρe
3
4 πi+ r

2At )e
−Atρ2

(ωc − ω2 − ixβ) +A(ρe
3
4 πi+ r

2At )
2 dρ,

where φ = −i(ωct− r2

4At )+ 1
4πi, Θ(x) is the Heaviside step

function. The frequency of the fields E(1)
l1 (r, t) (E(1)

l2 (r, t))
is ω2 − b

(1)
1 (ω2 − b

(1)
2 ), which is within the band gap.

Obviously, these two fields represent localized fields with-
out decay in time. The amplitudes of the localized fields
E(1)

l1 (r, t) and E(1)
l2 (r, t) drop exponentially with increasing

distance from the atom as e−r/l1 and e−r/l2 , respectively.

The localization lengths are l1 =
√
A/(ωc − ω2 + b

(1)
1 )

and l2 =
√
A/(ωc − ω2 + b

(1)
2 ), and the front velocities of

the localized fields are v
(1)
f1 = 2

√
A(ωc − ω2 + b

(1)
1 ) and

v
(1)
f2 = 2

√
A(ωc − ω2 + b

(1)
2 ). The localized fields E(1)

l1 (r, t)

and E(1)
l2 (r, t) do not decay against time and their distri-

butions with their energy are trapped in the vicinity of
the atom. That is, the corresponding dressed state is the
photon-atom bound dressed state with no decay. A pho-
ton which is emitted by the atom in this dressed state
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will tunneling on a length scale given by the localiza-
tion length before Bragg reflected back to the emitting
atom. This photon-atom bound state leads to the frac-
tionalized steady-state atomic population in the excited
state. Ed1(r, t) and E(1)

d2 (r, t) are the diffusion fields, which
have power-law decay and are without fixed phase differ-
ence between two space points. The expression of Ed1(r, t)
is given in equation (C.9), which comes from the branch-
point contribution, while E(1)

d2 (r, t) comes from the first

term
∑

j f1(x
(1)
j )ex

(1)
j t/G′(x(1)

j ) in equation (8b).

When the middle level |2〉 gets into region V, we have
two complex roots x(2)

j = (a(2)
j + ib

(2)
j )/β, (j = 1, 2). The

radiation field E(r, t)= E(2)(r, t) + E(3)(r, t) and can be
rewritten as (see Eqs. (C.8) and (C.9))

E(r, t) = E(2)
p1 (r, t)+E(2)

p2 (r, t)+Ed1(r, t)+E(2)
d2 (r, t) (15)

with

E(2)
pj (r, t) = E0(r)

f1(x
(2)
j )

H ′(x(2)
j )

π

A

× e−i(ω2−b
(2)
j )(t−r/v

(2)
pj )+a

(2)
j (t−r/v

(2)
ej )Θ

(
t− r

v
(2)
fj

)
,

Ed1(r, t) = E(3)(r, t),

E(2)
d2 (r, t) = E0(r)eφ

[
f1(x

(2)
1 )

H ′(x(2)
1 )

J(r, t, x(2)
1 )

+
f1(x

(2)
2 )

H ′(x(2)
2 )

J(r, t, x(2)
2 )

]
.

The frequency of E(2)
pj (r, t) is ω2− b(2)j , (j = 1, 2), which is

within the traveling band. E(2)
pj (r, t) represents a propagat-

ing field, which can travel away coherently from the atom
in the form of a traveling pulse with phase velocity v(2)

pj =

(ω2 − b
(2)
j )

√
A/Im(

√
ω2 − ωc + ix

(2)
j β) and the energy ve-

locity v(2)
ej = −a(2)

j

√
A/Re(

√
ω2 − ωc + ix

(2)
j β). The front

velocity of the propagating field is v
(2)
fj = 2

√
A(Re −

Im)
√
ωc − ω2 − ix

(2)
j β, (j = 1, 2). Ed1(r, t) and E(2)

d2 (r, t),

which comes from the second term
∑

j

f1(x
(2)
j )

H′(x(2)
j )

ex
(2)
j t in

equation (8b), represent the diffusion fields.
Similarly, when the middle level |2〉 gets into region III,

we can obtain one pure imaginary root x(1) = ib(1)/β and
one complex root x(2) = (a(2) + ib(2))/β. The radiation
field E(r, t) =E(1)(r, t)+E(2)(r, t)+E(3)(r, t) and can be
rewritten as (see Eqs. (C.7), (C.8), and (C.9))

E(r, t) =E(1)
l (r, t)+E(2)

p (r, t)+Ed1(r, t)+Ed2(r, t), (16)

with

E(1)
l (r, t) = E0(r)

f1(x(1))
G′(x(1))

π

A
e−i(ω2−b(1))t−r/lΘ

(
t− r

v
(1)
f

)
,

E(2)
p (r, t) = E0(r)

f1(x(2))
H ′(x(2))

π

A

× e−i(ω2−b(2))(t−r/v(2)
p )+a

(2)
j (t−r/v(2)

e )Θ

(
t− r

v
(2)
f

)
,

Ed1(r, t) = E(3)(r, t),

Ed2(r, t) = E0(r)eφ

[
f1(x(1))
G′(x(1))

J(r, t, x(1))

+
f1(x(2))
H ′(x(2))

J(r, t, x(2))
]
.

The field E(1)
l (r, t) represents a localized field without de-

cay in time due to its frequency is ω2 − b(1) < ωc, which
is within the band gap. The frequency of field E(2)

p (r, t) is
ω2− b(2) > ωc, which is within the traveling band and the
field E(2)

p (r, t) is a propagating field. Ed1(r, t) and Ed2(r, t)
are the diffusion fields. Ed2(r, t) comes from these terms
f1(x(1))
G′(x(1))

ex(1)t and f1(x(2))
H′(x(2))

ex(2)t in equation (8b).
As the middle level |2〉 is in regions II or IV, there

is only one pure imaginary or complex root exists. The
emitted field can be rewritten as

E(r, t) = E(1)
l (r, t) + Ed1(r, t) + E(1)

d2 (r, t), (in region II)

E(r, t) = E(2)
p (r, t) + Ed1(r, t) + E(2)

d2 (r, t), (in region IV).

There are a localized field and diffusion fields in the emit-
ted field for region II. While the emitted field composes of
a propagating field and diffusion fields in region IV.

From the above discussion we know that the main
parts of the emission field can be written as

E(r, t) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(1)
l1 (r, t)+E(1)

l2 (r, t)+Ed1(r, t)+E(1)
d2 (r, t) (region I)

E(1)
l (r, t)+Ed1(r, t)+E(1)

d2 (r, t) (region II)

E(1)
l (r, t)+E(2)

p (r, t)+Ed1(r, t)+Ed2(r, t) (region III)

E(2)
p (r, t)+Ed1(r, t)+E(2)

d2 (r, t) (region IV)

E(2)
p1 (r, t)+E(2)

p2 (r, t)+Ed1(r, t)+E(2)
d2 (r, t) (region V)

.

(17)

The emission field from the excited atom is characterized
by three different fields: the localized field, the propagat-
ing field and the diffusion field. The amplitudes of these
fields depend strongly on the relative position ω2c. In Fig-
ure 6 we plot the amplitudes of the localized field and the
propagating field as functions of the relative position of
the middle level |2〉 from the band edge for fixed distance
from the atom r =

√
A/β and at the fixed time t = 3/β.
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Fig. 6. The amplitude square (in arbitrary unit) of the lo-
calized field and propagating field as function of the relative
position ω2c with ωc = 100β, Ω = 0.5β, ωL12 = 0, r

√
β/A = 1,

and βt = 3.

From Figure 6, we found the amplitudes of the localized
fields E(1)

l (r, t) decrease as ω2c increases and the localized
field E(1)

l1 (r, t) (or E(1)
l2 (r, t)) will decreases to zero and

vanishes when ω2c changes from region I to region II (or
from region III to region IV). While, when the relative
position ω2c changes from region II to region III (or from
region IV to region V), there is a pronounced switch-on
effect for the propagating field E(2)

p1 (r, t) (or E(2)
p2 (r, t)).

These sudden increases of the propagating field can be
used to design an active optical multi-channel micro-sized
switch.

Although both the fields Ed1(r, t) and Ed2(r, t) are the
diffusion fields, their contributions to the emitted field in
different region of the middle level |2〉 are different. We
plot the amplitudes of the diffusion field Ed1(r, t) in Fig-
ure 7 and the diffusion field Ed2(r, t) in Figure 8, respec-
tively, as functions of the relative position of the middle
level |2〉 from the band edge for fixed distance from the
atom r =

√
A/β and at the fixed time t = t0 = 3/β.

From Figure 7, we note that the amplitudes of the diffu-
sion field Ed1(r, t) in regions II and IV are almost constant
and extremely strong (several hundred times stronger than
that in other regions). The diffusion field Ed1(r, t) in re-
gions I, III and V are extremely small and can be ne-
glected. The amplitude of the diffusion field Ed2(r, t) is
zero for the middle level |2〉 being in regions II and IV,
while it is not zero and much larger than the amplitude
of Ed1(r, t) for the middle level |2〉 being in regions I, III
and V (see Fig. 8). When the middle level |2〉 is far away
from the regions II and IV, the amplitude of Ed2(r, t) is
small (but much larger than Ed1(r, t)) because the diffu-
sion field Ed2(r, t) has already decayed at time t0.

Considering the process of the middle level |2〉 moves
from deep in the band gap to deep in the transmitting
band, we can get the following picture of the energy trans-
lation among the three different fields. When the relative
position ω2c increases from region I to region II, the ampli-
tude of the localized field E(1)

l1 (r, t) tends to zero and dis-
appears, and the diffusion field appears. The correspond-
ing energy of the localized field has been transferred to the

Fig. 7. The amplitude square (in arbitrary unit) of the diffu-
sion field Ed1(r, t) as function of the relative position ω2c with

ωc = 100β, Ω = 0.5β, ωL12 = 0, r
√

β/A = 1, and βt = 3.

Fig. 8. The amplitude square (in arbitrary unit) of the diffu-
sion field Ed2(r, t) as function of the relative position ω2c with

ωc = 100β, Ω = 0.5β, ωL12 = 0, r
√

β/A = 1, and βt = 3.

diffusion field Ed1(r, t) (see Figs. 6 and 7). As ω2c changes
from region II to region III, the propagating field E(2)

p1 (r, t)
begins to appear and the corresponding energy of the dif-
fusion field Ed1(r, t) is transferred to E(2)

p1 (r, t). Similarly,
as ω2c increases from region III through region IV to re-
gion V, the same process goes on among the localized
field E(1)

l2 (r, t), the diffusion field Ed1(r, t) and the propa-
gating field E(2)

p2 (r, t) (see Figs. 6 and 7). The disappear-
ance of the localized field in the present case is caused by
the anisotropic dispersion relation and this property does
not exist for an isotropic dispersion relation. For isotropic
case, the one-dimensional dispersion relation results in a
singularity in the density of state (DOS), and any weak
potential will lead to localization for electron [30]. John
and Wang mentioned the analogous localization for pho-
ton in photonic crystal, and got the concept of the ‘bound
photon-atom state’ [5]. Kofman et al. examined the same
question for a more general case [8]. So the localized field
always exists in the isotropic case.

The properties of the emission field also depend on the
external driving field. From the above discussion in the
previous section, we know that for fixed relative position
ω2c, the corresponding dressed states can change from re-
gion I through region II to region III (or from region V
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Fig. 9. The spectra of spontaneous emission from the excited
atom for ωc = 100β, Ω = 0.5β, ωL12 = 0, and (a) ω2c = −0.6β
(region I), (b) ω2c = −0.452485β (region II) with different
distance from atom.

through region IV to region III) as the intensity Ω of the
driving field increases. Furthermore, we found that the
main components of the emission field are so different in
the five regions from equations (17). So we can change
or so much as control the properties of the emission field
with the help of choosing suitable intensity of the external
driving field.

5 Spontaneous emission spectrum

Photonic crystals can affect strongly the spontaneous
spectrum of the excited atom. From Appendix D the ra-
diation spectrum S(r, ω) can be written as

S(r,ω) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|F1(r,ω) + F3(r,ω)|2 (region I)

|F1(r,ω) + F3(r,ω)|2 (region II)

|F1(r,ω) + F2(r,ω) + F3(r,ω)|2 (region III)

|F2(r,ω) + F3(r,ω)|2 (region IV)

|F2(r,ω) + F3(r,ω)|2 (region V)

. (18)

Where the functions F1(r,ω), F2(r,ω) and F3(r,ω) are
given in Appendix D (see Eqs. (D.3), (D.4) and (D.5)). If

Fig. 10. The spectra of spontaneous emission from the excited
atom for ωc = 100β, Ω = 0.5β, ωL12 = 0, and (a) ω2c =
0.5525β (region IV), (b) ω2c = 1.1β (region V) with different
distance from atom.

the middle level |2〉 is within regions I, II or III, F3(r,ω)
will be negligible small compared to F1,2(r,ω).

In Figures 9 and 10, we plot the emission spec-
tra s(r, ω) = S(r,ω)|A|2/|E0(r)|2 of spontaneous emission
from the excited atom for ωc = 100β, ωL12 = 0,and
Ω = 0.5β with different relative positions between the
middle level |2〉 and the band edge ω2c and different dis-
tance from the atom r. When the relative position of the
middle level |2〉 from the band edge ω2c changes, the emis-
sion spectrum changes.

When the middle level |2〉 is within region I, there are
the localized field and the diffusion field in the emitted
field. The emission spectra s(r, ω) with different distance
r are plotted in Figure 9a. The emission spectrum is com-
posed of two singularities due to two characteristic local-
ized modes and one small peak at the band edge corre-
sponding to the diffusion field for small r. The part of
the emitted field with the frequency being in the band
gap is localized, the corresponding energy is limited near
the atom. As the distance r increases, the amplitude corre-
sponding to the part of s(r, ω) with frequency being in the
band gap drops exponentially and becomes narrow with
increasing distance from the atom r. So the part of the
emission spectrum with frequencies being in the band gap
is composed of two lines instead of two singularities cor-
responding to two characteristic localized modes for large
r, and the two lines will disappear if r large enough. On
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the other hand, due to all energy of the emitted field with
frequency being in the traveling band can propagate out,
the corresponding part of the emission spectrum does not
change with the distance from the atom. So we found the
small peak corresponding to the diffusion field is at the
band edge and does not change with the distance from
the atom. In results, the total emission spectrum is de-
pendent on the distance from the atom (the location of
the observer).

As for the middle level |2〉 is within region II, there are
the localized field and the diffusion field in the emitted
field. The emission spectrum is composed of one singular-
ity within the band gap due to one characteristic localized
mode and one large peak at the band edge corresponding
to the diffusion field. As the distance r increases, the am-
plitude of the singularity within the band gap drops expo-
nentially and becomes narrow to one line which will vanish
if r large enough. While the large peak at the band edge
does not change for different distance from the atom r
(see Fig. 9b). Comparing Figure 9a with Figure 9b, the
spectrum corresponding to the diffusion field in region II
is extremely large than that in region I due to the ampli-
tudes of the diffusion field Ed1(r, t) in regions II and IV
are almost constant and extremely strong (several hun-
dred times stronger than that in other regions).

When the middle level |2〉 is within region III, there
are the localized field, the propagating field and the dif-
fusion field in the emitted field. In this region, the peak
of the diffusion field at frequency ωc is very small and it
is covered by the large peak for the propagating field. So
the emission spectrum is mainly composed of one singu-
larity within the band gap due to one characteristic lo-
calized mode and one large peak with frequency being in
the traveling band corresponding to the propagating field.
The peak for the propagating field does not change for
different distance from the atom r because the energy of
the propagating field with frequency being in the traveling
band can propagate out.

When the middle level |2〉 is within region IV, there are
the propagating field with frequency being in the traveling
band and the diffusion field in the emitted field. Similar to
region II, the amplitude of the diffusion field Ed1(r, t) in
region IV is also extremely strong (several hundred times
stronger than that in other regions I, III, V). So in the
emission spectrum there are obviously one peak at the
band edge corresponding to the diffusion field and one
peak with frequency being in the traveling band corre-
sponding to the propagating field (see Fig. 10a). The total
emission spectrum does not change for different distance
from the atom r because both the energy of the diffusion
field and the propagating field can propagate out.

When the middle level |2〉 is within region V, there are
the propagating field with frequency being in the traveling
band and the diffusion field in the emitted field. Similar to
region III, the amplitude of the diffusion field in region V is
so small that the peak of the diffusion field at frequency ωc

is covered by the large peak for the propagating field. So in
the emission spectrum there are obviously two large peaks
with frequencies being in the traveling band corresponding

to two propagating field modes (see Fig. 10b). The total
emission spectrum does not change for different distance
from the atom r because both the energy of the diffusion
field and the propagating field can propagate out.

It is well-known that in free space, when a two-
level excited atom decays by spontaneous emission to its
ground state, the spectrum of the emitted radiation has a
Lorentzian shape as a function of frequency. The emission
spectrum for a ladder three-level atomic system with ex-
ternal driving field was studied by Zhu in reference [26],
and the dark line, non-Lorentzian shape are found in the
emission spectrum due to quantum interference. The com-
mon characteristic of these spectra is that the spectra are
independent on the position of the observer in space. For
present case, the emission spectra are more complex due
to the influence of photonic crystal and the external driv-
ing field. It is obviously that the emission spectra in some
regions are strongly related with the distance of a partic-
ular space point r from the atom.

6 Conclusions

We have studied the properties of the spontaneous radia-
tion from a ladder three-level atom embedded in a three-
dimensional anisotropic photonic crystal with an external
driving field. As a special environment, photonic crystals
play an important role in the spontaneous emission of
the excited atom. It is found that the properties of the
spontaneous emission and the emitted field are depen-
dent strongly on the relative position of the middle level
from the band edge (five regions). We have also analyzed
the influence of the external driving field on the sponta-
neous emission, the emitted field and the emission spec-
trum. Due to the Autler-Townes splitting by the action of
the driving field, the external driving field can affect the
properties of the spontaneous emission and the emitted
field. The population exchanged between the upper and
the middle levels decreases as the detuning of the external
driving field frequency from the corresponding transition
frequency increases. The properties of the emission field
can be changed or so much as controlled by choosing suit-
able intensity of the external driving field. The emission
spectra in different regions are different due to the dif-
ferent components of the emission field in corresponding
regions. The emission spectrum is more complex, and de-
pendent on the location of the observer in this case.

This work was supported in part by the National Natural Sci-
ence Foundation of China (Grant No. 10674103, 60507008), the
Shanghai Phosphor Tracing Plan (Grant No. 04QMH1407) and
the Quantum Control Project of Shanghai Science Committee.

Appendix A: The calculation of Γ

For the model near the band edge, the coupling constant
gk can be approximated by

gk =
ω2d2

�

√
�

2ε0ωkV0
ek · ud. (A.1)
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We can calculate Γ in equation (6) as follows

Γ =
∑

k,ek

g2
k

s+ i(ωk − ω2)

=
(ω2d2)2

2ε0�V0

∑

k,ek

(ek · ud)(ek · ud)
ωk[s+ i(ωk − ω2)]

=
(ω2d2)2

2ε0�V0

∑

k

1 − (k · ud)2/k2

ωk[s+ i(ωk − ω2)]

=
(ω2d2)2

16π3ε0�

∫∫∫
[1 − (k · ud)2/k2]d3k
ωk[s+ i(ωk − ω2)]

(A.2)

where we have replaced the sum by an integral via
∑

k −→
V0

(2π)3

∫∫∫
d3k, and

∑
ek

(ek ·ud)(ek ·ud) = 1− (k ·ud) · (k ·
ud)/k2. Near the band edge, the dispersion relation may
be expressed approximately by ωk = ωc + A|k − kj

0|2.
The integration over k has to be carried out around
the direction of each kj

0 because of the anisotropy of a
three-dimensional photonic crystal. The angle between the
dipole vector of the atom and the jth kj

0 is θj . The angle
between the dipole and k near kj

0 is replaced approxi-
mately by θj . We calculate Γ as follows

Γ =
(ω2d2)2

16π3ε0�

∫∫∫
d3k

ωk[s+ i(ωk − ω2)]

[
1 − (k · ud)2

k2

]

=
(ω2d2)2

16π3ε0�

⎛

⎝
∑

j

sin2θj

⎞

⎠

×
∫∫∫

j

d3q
(ωc +A|q|2)[s+ i(ωc − ω2 +A|q|2)]

=
(ω2d2)2

4π2ε0�

⎛

⎝
∑

j

sin2θj

⎞

⎠

×
∫ ∞

0

q2dq

(ωc +Aq2)[s+ i(ωc − ω2 +Aq2)]

= − (ω2d2)2

8π2ε0�A3/2

⎛

⎝
∑

j

sin2θj

⎞

⎠

× i√
ωc +

√−is− (ω2 − ωc)
. (A.3)

Consequently, we have

Γ = − iβ3/2

√
ωc +

√−is− (ω2 − ωc)
(A.4)

with β3/2 = (ω2d2)2
∑

j sin2 θj/(8πε0�A3/2). The local
density of modes (A.4) is a result of an approximation.
A rather general model has been proposed by Kofman
et al. [8], in which a cut-off-smoothing parameter is used to
indicate different cases. For example, the case of large cut-
off-smoothing parameter corresponds to the anisotropic
model.

Appendix B: The calculation of the amplitudes
A(t) and B(t)

For convenience in the following calculation, we define
functions f1(x), f2(x), f3(x), f4(x), f5(x), f6(x), G(x) and
H(x) as follows

G(x) =
(
x− i√

Ωc +
√−ix−Ω2c

)
(x− iΩL12) +W 2

(B.1)

H(x) =
(
x− i√

Ωc − i
√
ix+Ω2c

)
(x− iΩL12) +W 2

(B.2)
f1(x) = WA1(0) + (x− iΩL12)A2(0) (B.3)

f2(x) = A1(0)
(
x− i√

Ωc +
√−ix−Ω2c

)
−WA2(0)

(B.4)

f3(x) = A1(0)
(
x− i√

Ωc − i
√
ix+Ω2c

)
−WA2(0)

(B.5)

f4(x) =
{[

(x−iΩ2c)(Ωc−ix)+i
√
Ωc

]
(x−iΩ2c+iΩL12)

+W 2Ωc − ix)
}2

+ ix(x− iΩ2c + iΩL12)2 (B.6)

f5(x) = i1/2
√
x(Ωc − ix)(−x+ iΩ2c − iΩL12)

× [WA1(0) + (−x+ iΩ2c − iΩL12)A2(0)] (B.7)

f6(x) = i1/2√xW (Ωc − ix)

× [−(−x+ iΩ2c − iΩL12)A2(0) −WA1(0)]
(B.8)

where x = s
β , Ωc = ωc

β , Ω2c = ω2c

β , ΩL12 = ωL12
β , W = Ω

β .
Using the inverse Laplace transform, the amplitude A(t)
can be written as

A1(t) =
e−iωL12t

2πi

∫ σ+i∞

σ−i∞
A1(s− iωL12)estds

=
e−iωL12t

2πi

∫ σ′+i∞

σ′−i∞

×
A1(0)

(
x− i√

Ωc+
√−ix−Ω2c

)
−WA2(0)

(
x− i√

Ωc+
√−ix−Ω2c

)
(x− iΩL12)+W 2

exβtdx

=
∑

j

f2(x
(1)
j )

G′(x(1)
j )

ex
(1)
j βt−iωL12t

− e−iωL12t

2πi

[∫ iΩ2c+0

iΩ2c−∞
+
∫ −i∞+0

iΩ2c+0

]

×
A1(0)

(
x− i√

Ωc+
√−ix−Ω2c

)
−WA2(0)

(
x− i√

Ωc+
√−ix−Ω2c

)
(x− iΩL12) +W 2

exβtdx

(B.9)
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e−iωL12t

2πi

∫ −i∞+0

iΩ2c+0

A1(0)
(
x − i√

Ωc+
√−ix−Ω2c

)
− WA2(0)

(
x − i√

Ωc+
√−ix−Ω2c

)
(x − iΩL12) + W 2

exβtdx

=
e−iωL12t

2πi

∫ −i∞

iΩ2c

A1(0)
(
x − i√

Ωc−i
√

ix+Ω2c

)
− WA2(0)

(
x − i√

Ωc−i
√

ix+Ω2c

)
(x − iΩL12) + W 2

exβtdx

= −e−iωL12t

2πi

∫ iΩ2c

iΩ2c−∞

A1(0)
(
x − i√

Ωc−i
√

ix+Ω2c

)
− WA2(0)

(
x − i√

Ωc−i
√

ix+Ω2c

)
(x − iΩL12) + W 2

exβtdx −
∑

j

f3(x
(2)
j )

H ′(x(2)
j )

ex
(2)
j βt−iωL12t (B.10)

A1(t) = e−iωL12t

[
∑

j

f2(x
(1)
j )

G′(x(1)
j )

ex
(1)
j

βt +
∑

j

f3(x
(2)
j )

H ′(x(2)
j )

ex
(2)
j

βt

]
+

e−iωL12t

2πi

∫ iΩ2c

iΩ2c−∞
exβtdx

×
⎡

⎣
A1(0)

(
x − i√

Ωc−i
√

ix+Ω2c

)
− WA2(0)

(
x − i√

Ωc−i
√

ix+Ω2c

)
(x − iΩL12) + W 2

−
A1(0)

(
x − i√

Ωc+
√−ix−Ω2c

)
− WA2(0)

(
x − i√

Ωc+
√−ix−Ω2c

)
(x − iΩL12) + W 2

⎤

⎦

= e−iωL12t

[
∑

j

f2(x
(1)
j )

G′(x(1)
j )

ex
(1)
j βt +

∑

j

f3(x
(2)
j )

H ′(x(2)
j )

ex
(2)
j βt +

eiω2ct

π

∫ ∞

0

f6(x)

f4(x)
e−xβtdx

]
(B.11)

where x(1)
j are the roots of equation G(x) = 0 in the re-

gion (Re(x) > 0) or (Im(x) > Ω2c). The real number σ′ is
chosen so that x = σ′ lies to the right of all the singular-
ity x(1)

j

see equations (B.10) above

where x(2)
j is the roots of equation H(x) = 0 in the region:

(Re(x) < 0 and Im(x) < Ω2c)

see equations (B.11) above.

Similarly, using the inverse Laplace transform, the ampli-
tude A2(t) can be written as

A2(t) =
1

2πi

∫ σ+i∞

σ−i∞
A2(s)estds

=
∑

j

f1(x
(1)
j )

G′(x(1)
j )

ex
(1)
j βt +

∑

j

f1(x
(2)
j )

H ′(x(2)
j )

ex
(2)
j βt

+
eiω2ct

π

∫ ∞

0

f5(x)
f4(x)

e−xβtdx. (B.12)

Appendix C: The calculation of the radiation
field E(r, t)

For the model near the band edge, the amplitude of
the radiated field at a particular space point r can be

approximated by [29]

E(r,t) =
∑

k

√
�ωk

2ε0V0
e−i(ωt−k·r)Bk(t)ek

=
∑

k

ω2d2

2ε0V0
e−i(ωt−k·r)

[∫ t

0

A2(t′)ei(ωk−ω23)t
′
dt′
]

×
[
ud−k(k · ud)

k2

]

=
ω2d2

16π3ε0

∑

j

eikj
0·r
[
ud − kj

0(k
j
0 · ud)

(kj
0)2

]

×
∫∫∫

d3qe−i(ωqt−q·r)
[∫ t

0

A2(t′)ei(ωq−ω2)t
′
dt′
]

(C.1)

where we have used q = k − kj
0, d

3q = d3k, and have
replaced the sum by an integral via

∑
k → V

(2π)3

∫∫∫
d3k.

Suppose A2(t′) = exβt′, we have

∫∫∫
d3qe−i(ωqt−q·r)

∫ t

0

A2(t′)i(ωq−ω23)t
′
dt′ =

2π
ir

∫ ∞

−∞

e(xβ−iω2)t − e−iωqt

i(ωq − ω2) + xβ
eiqrqdq (C.2)

∫ ∞

−∞

e(xβ−iω2)t

i(ωq − ω2) + xβ
eiqrqdq =

π

A
e(xβ−iω2)t−r

√
[(ωc−ω2)−ixβ]/A (C.3)
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ω2d2

16π3ε0

∑

j

eikn
0 ·r

[
ud − kj

0(k
j
0 · ud)

(kj
0)

2

] ∫∫∫
d3qe−i(ωqt−q·r)

[∫ t

0

A2(t
′)ei(ωq−ω2)t′dt′

]

=
ω2d2

8π2ε0ri

∑

j

eik
j
0·r
[
ud − kj

0(k
j
0 · ud)

(kj
0)

2

] ∫ ∞

−∞

e(xβ−iω2)t − e−iωqt

i(ωq − ω2) + xβ
eiqrqdq

=
ω2d2

8π2ε0ri

∑

j

eik
j
0·r
[
ud−kj

0(k
j
0·ud)

(kj
0)

2

]

×
{

π

A
e(xβ−iω2)t−r

√
((ωc−ω2)−ixβ)/AΘ

(
2t
√

A(Re−Im)
√

ωc−ω2−ixβ − r
)

Θ(ωc − ω2 + Im(xβ))

+
π

A
e(xβ−iω2)t+r

√
((ωc−ω2)−ixβ)/AΘ

(
2t
√

A(Im − Re)
√

ωc−ω2−ixβ − r
)

Θ(ω2−ωc−Im(xβ))

+ e−i(ωct− r2
4At

)+ 3
4 πi

∫ ∞

−∞

(
ρe

3
4 πi + r

2At

)
e−Atρ2

xβ + i(ωc − ω2) + iA
(
ρe

3
4 πi + r

2At

)2
dρ

}
. (C.5)

∫ ∞

−∞

e−iωqt

i(ωq − ω2) + xβ
eiqrqdq =

∫ ∞

−∞

(q + r
2At )e

−iAtq2
e−i[ωct−(r2/4At)]

i(ωc − ω2) + iA(q + r
2At )

2 + xβ
dq (C.4)

with
∫ 0

−∞

(q + r
2At

)e−iAtq2
e−i[ωct−(r2/4At)]

i(ωc − ω2) + iA(q + r
2At

)2 + xβ
dq =

π

A
e(xβ−iω2)t−r

√
[(ωc−ω2)−ixβ]/A

×
{

1 (Im(xβ)<ω2−ωc)

Θ[r + 2t
√

A(Im − Re)
√

ωc − ω2 − ixβ] (Im(xβ)�ω2−ωc)

− e−i[ωct−(r2/4At)]+(3/4)πi

×
∫ ∞

0

(
ρe(3/4)πi + r

2At

)
e−Atρ2

xβ + i(ωc − ω2) + iA
(
ρe(3/4)πi + r

2At

)2 dρ

and
∫ ∞

0

(q + r
2At

)e−iAtq2
e−i[ωct−(r2/4At)]

i(ωc − ω2) + iA(q + r
2At

)2 + xβ
dq =

− π

A
e(xβ−iω2)t+r

√
[(ωc−ω2)−ixβ]/A

×
{

Θ[2t
√

A(Im − Re)
√

ωc − ω2 − ixβ − r] (Im(xβ)<ω2−ωc)

0 (Im(xβ)�ω2−ωc)

+ e−i[ωct−(r2/4At)]−(1/4)πi

×
∫ ∞

0

(
ρe−(1/4)πi + r

2At

)
e−Atρ2

xβ + i(ωc − ω2) + iA
(
ρe−(1/4)πi + r

2At

)2 dρ.

Here Θ(x) is the step function for x � 0, Θ(x) = 1, and
x < 0, Θ(x) = 0. So we can obtain

see equation (C.5) above.

From equations (B.12), (C.1), and (C.5), we can calculate
the radiation field E(r, t). Corresponding to each term in
A2(t), we can obtain

E(r, t) = E(1)(r, t) + E(2)(r, t) + E(3)(r, t). (C.6)

(1) For the pure imaginary root x(1)
j = ib

(1)
j /β, we have

ω2 − b
(1)
j < ωc. The term in A2(t) related to x

(1)
j is

∑
j

f1(x
(1)
j )

G′(x(1)
j )

ex
(1)
j βt. So the term E(1)(r, t) in the radiation

field E(r, t) can be obtained as follows:

E(1)(r, t) = E0(r)
∑

j

f1(x
(1)
j )

G′(x(1)
j )

×
{
π

A
e−i(ω2−b

(1)
j )t−r

√
(ωc−ω2+b

(1)
j )/A

×Θ

⎛

⎝t− r

2
√
A
√
ωc − ω2 + b

(1)
j

⎞

⎠

+e−i(ωct− r2
4At )+ 1

4 πi

∫ ∞

−∞

(ρe
3
4 πi+ r

2At )e
−Atρ2

(ωc−ω2+b
(1)
j ) +A(ρe

3
4 πi+ r

2At )
2
dρ

}

(C.7)

where E0(r) = ω2d2
8π2ε0ri

∑
j e

ikj
0·r[ud − kj

0(k
j
0·ud)

(kj
0)2

].
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(2) For the complex root x
(2)
j = (a(2)

j + ib
(2)
j )/β,

we have ω2 − b
(2)
j > ωc and a

(2)
j < 0. The term

∑
j

f1(x
(2)
j )

H′(x(2)
j )

ex
(2)
j βt in A2(t) is related to x(2)

j . So the term

E(2)(r, t) in the radiation field E(r, t) can be written as:

E(2)(r, t) = E0(r)
∑

j

f1(x
(2)
j )

H ′(x(2)
j )

×
{
π

A
e−i(ω2+ix

(2)
j β)t−r

√
(ωc−ω2−ix

(2)
j β)/A

×Θ

⎛

⎝t− r

2
√
A(Re − Im)

√
ωc − ω2 − ix

(2)
j β

⎞

⎠

+e−i(ωct− r2
4At )+ 1

4 πi

×
∫ ∞

−∞

(ρe
3
4 πi+ r

2At )e
−Atρ2

(ωc−ω2−ix(2)
j β) +A(ρe

3
4 πi+ r

2At )
2
dρ

}
. (C.8)

(3) For the integration term in A2(t), we have

E(3)(r, t) =
E0(r)
π

∫ ∞

0

f5(x)
f4(x)

dx

[
e−i(ωct− r2

4At )+ 3
4 πi

×
∫ ∞

−∞

(ρe
3
4 πi+ r

2At )e
−Atρ2

−xβ + iA(ρe
3
4 πi+ r

2At )
2
dρ

]
. (C.9)

Appendix D: The calculation of the emission
spectrum S(r, ω)

The Fourier transform of the radiation field is

F(r,ω) =
1
2π

∫ ∞

0

E(r, t)eiωtdt. (D.1)

So the emission spectrum S(r,ω) can be obtained,
S(r,ω) = |F(r,ω)|2. From equations (B.12) and (C.1),
F(r,ω) can be rewritten as the sum of three parts, which
come from the three terms of equation (B.12):

F(r,ω) = F1(r,ω) + F2(r,ω) + F3(r,ω). (D.2)

(1) For the pure imaginary root x(1)
j , we have

F1(r, ω) =
E0(r)

2π

∑

j

f1(x
(1)
j )

G′(x(1)
j )

∫ ∞

−∞

qeiqrdq

i(ωq−ω2) + x(1)
j β

×
∫ ∞

0

(e(x
(1)
j β−iω2)t+iωt−e−iωqt+iωt)dt

=
E0(r)

2π

∑

j

f1(x
(1)
j )

G′(x(1)
j )

lim
s→0+

∫ ∞

−∞

× qeiqrdq

[−s+ i(ω − ω2−ix(1)
j β)][−s+ i(ω − ωq)]

= −E0(r)
2A

∑

j

f1(x
(1)
j )

G′(x(1)
j )

× lim
s→0+

f(ω)

−s+ i(ω − ω2−ix(1)
j β)

(D.3)

where Θ(x) is the step function. The functions f(ω) is
defined as

f(ω) = e−r
√

(ωc−ω)/AΘ(ωc − ω) + eir
√

(ω−ωc)/AΘ(ω − ωc)

(2) For the complex root x(2)
j = (a(2)

j + ib
(2)
j )/β , we have

ω2 − b
(2)
j > ωc and a(2)

j < 0

F2(r, ω) = −E0(r)
2A

∑

j

f1(x
(2)
j )

H ′(x(2)
j )

f(ω)

i(ω − ω2−ix(2)
j β)

.

(D.4)
(3) For the integration term in B(t), we have

F3(r, ω) =
E0(r)
2Aπ

∫ ∞

0

f5(x)
f4(x)

f(ω)
i(ω − ω2−ixβ)

dx. (D.5)
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